Ethylene-Related Gene Expression Networks in Wood Formation
نویسندگان
چکیده
Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood) inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula) stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2) homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and potential targets for EIN3D and ERF transcription factors in Populus stem tissues, which can help to understand the range of ethylene targeted biological processes during secondary growth.
منابع مشابه
Plant Hormones in Wood Formation -Novel Insights into the Roles of Ethylene and Gibberellins
Björklund, S. 2007. Plant hormones in wood formation –Novel insights into the roles of ethylene and gibberellins. Doctor’s dissertation, ISSN 1652-6880, ISBN 978-91-576-7380-0 The role of plant hormones in wood development has been studied for decades, and their crosstalk in many biological processes is the subject of increasing focus. In this thesis, modern biological tools have been used to p...
متن کاملExpression of Genes Encoding Protein Kinases During Flower Opening in Two Cut Rose Cultivars with Different Longevity
Ethylene plays an important role in wide-ranging aspects of plant growth and development, includingfruit ripening, leaf and flower senescence. In this study, the expression patterns of two genes involved in theethylene signal transduction pathway (RhCTR1 and RhCTR2) were investigated during the flower openingstages in two Rosa hybrida cultivars, ‘Black magic’ and ‘Maroussia’, ...
متن کاملEthylene signaling via Ethylene Response Factors (ERFs) modifies wood development in hybrid aspen
Background The phytohormone ethylene (ET) has the potential to regulate secondary growth of plants and wood formation in trees. Application of exogenous ethylene or its in planta precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), to wood forming tissues of hybrid aspen (Populus tremula x Populus tremuloides) enhances xylem growth [1]. In the same study it was demonstrated that stimulation ...
متن کاملTranscriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus.
Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled amyloplasts and relocalization of the auxin transp...
متن کاملEthylene and Auxin in the Control of Wood Formation
Hellgren, J.M. 2003. Ethylene and auxin in the control of wood formation. Doctoral thesis. Silvestria 268. ISSN 1401-6230, ISBN 91-576-6502-8 This thesis considers aspects of the regulation of growth rate and fibre properties in forest trees. These properties are both genetically determined and influenced by environmental stimuli. Induction of reaction wood is an environmentally induced process...
متن کامل